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Mesenchymal Stem Cells and Cancer — for Better or for
Worse?
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The importance of the microenvironment and stroma in the evolution and progression
of solid tumors has re-emerged in the past few years.  Recently, mesenchymal stem
cells (MSCs), which are the progenitors of stromal cells and fibroblasts, have also
been found to interact with cancer cells.  Most commonly isolated from the bone
marrow, MSCs are multipotent adult stem cells with immunomodulatory effects and
the ability to home to sites of injury.  These properties, clearly useful for therapeutic
purposes, have recently been found to be abused by cancer cells for their own end.
However, reports also show that MSCs can inhibit tumor growth under certain circum-
stances.   This review briefly describes what is currently known about this emerging
field of cancer-MSC biology, which is bringing new knowledge to an old disease and
may hopefully reveal new ideas and targets for treatment.
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Cancer continues to be a global problem of epidemic pro-
portion [1].  Over the decades, tremendous efforts spent on
studying the disease have revealed much in terms of the
molecular and genetic alterations that the cancerous cell
undergoes over time to allow for growth, invasion, and
finally metastasis.  Recently, the microenvironment sur-
rounding the cancer cells has been receiving renewed
interest, revisiting the “seed and soil” hypothesis of cancer
first put forth by Paget in 1889 [2-5].  Solid tumors depend on
a three-dimensional structure for their existence and growth,
which is comprised of a complex mix of cell types and
tissues, including endothelial cells, immune cells, stromal
cells, and extracellular matrix (ECM2)[2].  Importantly, these
cancer-associated cells may not only be involved in the
disease process itself, but also can be potential targets for
therapy.  The role of endothelial cells in tumor growth and
metastasis is now well established, and research in angio-
genic processes has yielded effective drug targets for
treatment [6].  More recently, it has been shown that the
surrounding stromal and inflammatory cells also play a
critical role in angiogenesis and may on the contrary, protect
the tumor from normal processes of eradication [2].  Thus,
stromal cells and their associated matrix, as well as cells of
the immune system, are now seen to be integral in carcino-
genesis and metastasis.

While the initiating event often occurs in the cancer cell
itself, the stroma has been called a “co-conspirator” in the
subsequent evolution and progression of the disease.  Injury
to  the  stroma,  such as  exposure to tumor-promotor chemi-
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cals and irradiation, results in acquisition of a tumor-
promoting phenotype [7,8].  There is also genetic evidence
for a role of fibroblasts in cancer: in transgenic mouse
studies, the deletion of fibroblast secreted protein-1 (FSP-1)
leads to a phenotype that is less likely to form tumors or
metastasis [9].  However, when the FSP-1-/- mice are injected
with tumor cells which are admixed with wild-type fibro-
blasts, tumor development and metastasis are re-established.
Moreover, enzymes known to participate in carcinogenesis
and previously thought to be secreted by the cancer cells
only, now have been shown to be produced by stromal
elements as well.  These proteins include matrix metallopro-
teinases (MMPs) which are involved in carcinogenesis,
tumor progression/invasion, and possibly in recruitment of
new vessels [10].  Furthermore, growth factors and cytoki-
nes such as vascular endothelial growth factor, transforming
growth factor-β, and stromal cell derived factor-1 (SDF-1)
also have prominent roles in stromal cell-related carcino-
genesis and epithelial tumor progression, and exactly how
these factors interact with each other is being actively
studied [11-17].  

In addition to mature stromal elements affecting carcino-
genesis, attention has now turned to the progenitor cells of
the stroma, the mesenchymal stem cells (MSCs).  MSCs are
adult stem cells which have received much press of late,
since demonstration of clonal multipotency [18].  These cells
are most commonly found in the mononuclear cell fraction
of the bone marrow and isolated by their adherence to
plastic tissue culture plates [19].  Increasingly, similar cells
have been isolated from a number of other sources including
lipoaspirate and many fetal tissues [20-26].  MSCs are able to
form colonies of fibroblastic cells and express a varied
repetoire of cell surface markers such as CD73/SH-3/SH-4
and endoglin/CD105/SH-2, but no hematopoietic markers of
CD34, CD14, CD45, or CD117/c-kit [27].  Previously thought
to act only as support for hematopoiesis within the bone
marrow, MSCs are now known to possess potent differentia-
tion capabilities, differentiating easily into mesodermal
phenotypes of adipocytes, osteoblasts, chondrocytes, and
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muscle cells, as well as some extra-mesodermal cell types
including neural, pancreatic, and hepatocytic phenotypes
(for review, see [28]).  These properties of MSCs have
generated much excitement, making them potentially useful
for therapeutic applications.  Moreover, recent findings of
immunosuppressive effects in MSCs make these cells
especially attractive in terms of allogeneic use, tremen-
dously increasing prevalent use of MSCs beyond just the
autologous setting [28,29].  Indeed, it has been proposed
that MSCs may actually be “universal donor cells”, not
requiring immune matching, and perhaps even becoming
“off the shelf” products [29].  In addition, MSCs have been
shown to home to sites of inflammation and injury, making
these cells ideal for cell therapy in a number of disease
processes [30].  As a result of these findings, MSCs are
currently being investigated in clinical trials for a wide
spectrum of indications, ranging from cell replacement to
immunotherapy [31,32].

It is known that under normal circumstances, transplanted
MSCs will home to the bone marrow [33,34].  If there is injury,
however, MSCs can preferentially mobilize to the sites of
inflammation [35,36], as well as migrate across the endothe-
lium, hypothesized in a manner similar to that of leukocyte
trafficking [37].  Indeed, many of the adhesion and
chemokine receptors on leukocytes involved in such proc-
esses can also be found on MSCs.  MSCs have been report-
ed to express a number of adhesion molecules, including
integrins (CD29, α1 to α5, β1, β3, β4), CD44, CD54/ICAM-1,
CD106/VCAM-1, and CD166/ALCAM [27].  It has recently been
demonstrated that the integrin VLA-4/CD49d/α4 is involved
in MSC adhesion to endothelial cells and transmigration [38].
Tissue inhibitor of metalloproteinase-1 (TIMP-1), on the other
hand, appears to inhibit MSC migration [39].  In terms of
chemokine receptor expression on MSCs, several have been
found, with the most consistent finding being expression of
CXCR4, the receptor for SDF-1 [34,40-44].  The picture of
how various adhesion molecules and chemokines are
involved in MSC migration is still very tentative, and awaits
much more research for clarity.

The homing of MSCs to tumors was among the earliest
phenomenon of MSC-cancer interactions to be reported.  In
an in vivo mouse model, injected human MSCs bearing GFP
could be found preferentially migrating to implanted human
melanoma tumors [45].  Subsequently, there have been more
studies showing MSCs homing to tumors and even to sites
of metastasis [46].  This property was rapidly exploited for
therapeutic use as well as for tracking of the stem cells [47-
51].  However, the interactions between MSCs and tumor
cells are not limited to homing, but seem to include more
adverse effects.  Djouad et al. in 2003 found that co-
transplantation of MSCs with melanoma cells in mice
enhances tumor engraftment and growth, results which
persisted even when the MSCs were transplanted at a site
distant to the tumor cells [52].  Further research by the same
team showed that the presence of MSCs allowed for earlier
growth of tumor but had no effect on metastasis [53],
whereas Karnoub et al. found that MSCs when admixed with
tumor cells increased the metastatic potential of several
breast cancer cell lines [54].  The most intriguing report so
far comes from Houghton et al., who showed that, under
conditions of chronic inflammation, transplanted bone
marrow cells − which the authors determined most likely to
be MSCs − contributed to Helicobacter pylori-associated
gastric cancer [55].  This study is in line with MSCs’ ability to
migrate to inflammatory cues, evoking the hypothesis of
cancer as a non-healing wound [5,56].

The emerging picture on MSCs and cancer cell interaction
appears to involve two inherent properties of these stem
cells: their immunosuppressive effects and their ability to
migrate.  The immunosuppressive properties of MSCs are

now well documented, with many studies focusing on the
utility of these effects in terms of transplantation [28,30,32].
Bone marrow MSCs from humans, baboons, and mice have
been shown to decrease the immune response of lympho-
cytes in vitro and in vivo [52,57-60].  The immunosuppres-
sive properties are broad, effective whether the stimulation
is specific or non-specific [57-60], across species [52,57,61],
and across different populations of lymphocytes [52,57,61-
64].  A number of mechanisms have been found to be
responsible for these effects, such as secretion of anti-
inflammatory molecules including cytokines (for summary,
see [65]), prostaglandin E2 [66], and indoleamine 2,3-
dioxygenase [67,68]; modulation of dendritic cell develop-
ment and function [63,66,69]; suppression of lymphocyte
cytotoxic effector functions [70,71], and increasing the
number of regulatory T cells [64,72], a population of immu-
nosuppressive lymphocytes.  MSC immunomodulation share
many similarities to maternal-fetal tolerance [46].  Sadly,
these mechanisms are eerily reminiscent of strategies
employed by tumor cells to evade the immune system [73].
Thus, cancer cells are able to manipulate the body’s own
efficient tolerogenic mechanisms for their own end.  The
unanswered key question remains why MSCs are able to
evade immune attack.  One hypothesis is that MSCs are
attracted to sites of injury to mediate “immunological
homeostasis” − along with regulatory T cells and secretion
of anti-inflammatory molecules − limiting excessive tissue
damage [29].  It may be that cancer cells are able to harness
MSCs’ “good intentions” for their own end, in much the
same way that they manipulate various aspects of the
immune system.  Much work is still needed to close the gaps
in our knowledge on this aspect of MSC biology [65].

Unlike MSC immunomodulation, the underlying mecha-
nisms in homing of MSCs to tumors and subsequent interac-
tions are just beginning to be revealed.  In one recent report,
it was shown that secretion of SDF-1, a potent chemoattrac-
tant secreted by marrow stromal cells for hematopoietic
stem cells, was increased when MSCs were exposed to the
conditioned medium of cancer cells [74].  Using both in vivo
and clinical data on breast cancer, two recent studies have
found that MSCs migrate to tumor sites.  Dwyer et al. show-
ed that monocyte chemotactic protein-1 (MCP-1) secretion
by breast cancer cells was responsible for the homing of
MSCs to tumors, both locally and systemically [46].  On the
other hand, Karnoub et al. found that although MSCs would
home to tumors, it did not disseminate along with tumor
cells to metastatic sites.  Instead, it was the secretion of
CCL5/RANTES by MSCs after physical contacted with cancer
cells that was responsible for enhancing the metastatic
potential of several breast cancer cell lines [54].  Irradiation
of tumors, which releases inflammatory mediators, has also
been shown to increase the engraftment of MSCs to the
tumors [75].  As have been found with mature stromal
elements, MSCs also appear to secrete a number of MMPs
and ECM-degrading enzymes − specifically MMP-2, TIMP-2,
and membrane type 1-MMP − which may explain the ability of
these cells to pass through the basement membrane [39].

While most reports to date implicate MSCs with having
tumor-promoting effects, there have been a few studies
showing the opposite result.  Khakoo et al. found that
injection of MSC in a model of Kaposi’s sarcoma actually
inhibited tumor growth in a dose-dependent manner [76].  In
fact, although Djouad et al. found that injected MSCs (103 ∼
105 cells with 104 tumor cells) allowed for earlier growth of
tumors, low MSC numbers (102 MSCs with 104 tumor cells)
unexpectedly induced rejection of the tumors [53].  The
results in these two studies highlight the importance in the
details of the experimental design.  Cell numbers have been
known to affect MSC immunomodulatory properties, which
are lost when low doses of MSCs are used, resulting con-
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Figure 1: Mechanisms of MSC and cancer interactions (black, pro-tumorigenic; red, anti-tumorigenic).  MSCs (brown cells) are able to migrate
and home to tumors (light blue cells for primary site; dark blue cells for metastasis) where transmigration through endothelium and basement
membrane may occur (gray lines).  Immunomodulation and secretion of chemokines by MSCs may affect tumor engraftment and metastasis.

versely in increasing rather than decreasing lymphocyte
proliferation [77].  Different results between reports may also
be reflective of the lack of standardization in MSC cell
culture techniques, including isolation methods and length
of time in in vitro culture, all of which are known to introduce
phenotypic variation [78].

The evidence for MSCs as active participants in cancer is
just emerging (Figure 1), with more questions raised than
answered.  A critical issue is whether the current models
used in the studies accurately reflect what is actually
happening in the natural setting, since most in vivo experi-
ments use high numbers of exogenously introduced MSCs,
an unlikely scenario in the endogenous state.  Moreover,
since the reports have been limited to a few types of cancers,
it is still unknown how MSCs interact with other cancers, if at
all.  Although extrapolations are often made to tumors in
other organ systems, there is much evidence that cell-cell
interactions and mechanisms are highly specific not only for
a particular organ system, but even for a particular his-
tological cancer type [10].  Nevertheless, new findings in this
area have been significant and may yet result in paradig-
matic shifts in our thinking of cancer formation and evolu-
tion.  Much remains to be answered regarding the microenvi-
ronment of the tumor, and research into this area will not
only add new scientific knowledge but should also bring
forth new therapeutic ideas and targets in the continued
fight against a devastating and lethal disease.  
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